3.4.96 \(\int \frac {x^2}{(d+e x^2)^{3/2} (a+b x^2+c x^4)} \, dx\) [396]

3.4.96.1 Optimal result
3.4.96.2 Mathematica [C] (verified)
3.4.96.3 Rubi [A] (verified)
3.4.96.4 Maple [A] (verified)
3.4.96.5 Fricas [B] (verification not implemented)
3.4.96.6 Sympy [F]
3.4.96.7 Maxima [F]
3.4.96.8 Giac [F(-1)]
3.4.96.9 Mupad [F(-1)]

3.4.96.1 Optimal result

Integrand size = 29, antiderivative size = 333 \[ \int \frac {x^2}{\left (d+e x^2\right )^{3/2} \left (a+b x^2+c x^4\right )} \, dx=-\frac {e x}{\left (c d^2-b d e+a e^2\right ) \sqrt {d+e x^2}}+\frac {c \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e} x}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e} \left (c d^2-b d e+a e^2\right )}+\frac {c \left (d+\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e} x}{\sqrt {b+\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{\sqrt {b+\sqrt {b^2-4 a c}} \sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e} \left (c d^2-b d e+a e^2\right )} \]

output
-e*x/(a*e^2-b*d*e+c*d^2)/(e*x^2+d)^(1/2)+c*arctan(x*(2*c*d-e*(b-(-4*a*c+b^ 
2)^(1/2)))^(1/2)/(e*x^2+d)^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2))*(d+(2*a*e-b 
*d)/(-4*a*c+b^2)^(1/2))/(a*e^2-b*d*e+c*d^2)/(2*c*d-e*(b-(-4*a*c+b^2)^(1/2) 
))^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)+c*arctan(x*(2*c*d-e*(b+(-4*a*c+b^2)^ 
(1/2)))^(1/2)/(e*x^2+d)^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2))*(d+(-2*a*e+b*d 
)/(-4*a*c+b^2)^(1/2))/(a*e^2-b*d*e+c*d^2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)/(2* 
c*d-e*(b+(-4*a*c+b^2)^(1/2)))^(1/2)
 
3.4.96.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.64 (sec) , antiderivative size = 463, normalized size of antiderivative = 1.39 \[ \int \frac {x^2}{\left (d+e x^2\right )^{3/2} \left (a+b x^2+c x^4\right )} \, dx=-\frac {\frac {4 e x}{\sqrt {d+e x^2}}-\text {RootSum}\left [a e^4+4 b d e^2 \text {$\#$1}^2-4 a e^3 \text {$\#$1}^2+16 c d^2 \text {$\#$1}^4-8 b d e \text {$\#$1}^4+6 a e^2 \text {$\#$1}^4+4 b d \text {$\#$1}^6-4 a e \text {$\#$1}^6+a \text {$\#$1}^8\&,\frac {-a e^4 \log (x)+a e^4 \log \left (-\sqrt {d}+\sqrt {d+e x^2}-x \text {$\#$1}\right )-4 c d^2 e \log (x) \text {$\#$1}^2+3 a e^3 \log (x) \text {$\#$1}^2+4 c d^2 e \log \left (-\sqrt {d}+\sqrt {d+e x^2}-x \text {$\#$1}\right ) \text {$\#$1}^2-3 a e^3 \log \left (-\sqrt {d}+\sqrt {d+e x^2}-x \text {$\#$1}\right ) \text {$\#$1}^2+4 c d^2 \log (x) \text {$\#$1}^4-3 a e^2 \log (x) \text {$\#$1}^4-4 c d^2 \log \left (-\sqrt {d}+\sqrt {d+e x^2}-x \text {$\#$1}\right ) \text {$\#$1}^4+3 a e^2 \log \left (-\sqrt {d}+\sqrt {d+e x^2}-x \text {$\#$1}\right ) \text {$\#$1}^4+a e \log (x) \text {$\#$1}^6-a e \log \left (-\sqrt {d}+\sqrt {d+e x^2}-x \text {$\#$1}\right ) \text {$\#$1}^6}{b d e^2 \text {$\#$1}-a e^3 \text {$\#$1}+8 c d^2 \text {$\#$1}^3-4 b d e \text {$\#$1}^3+3 a e^2 \text {$\#$1}^3+3 b d \text {$\#$1}^5-3 a e \text {$\#$1}^5+a \text {$\#$1}^7}\&\right ]}{4 c d^2-4 b d e+4 a e^2} \]

input
Integrate[x^2/((d + e*x^2)^(3/2)*(a + b*x^2 + c*x^4)),x]
 
output
-(((4*e*x)/Sqrt[d + e*x^2] - RootSum[a*e^4 + 4*b*d*e^2*#1^2 - 4*a*e^3*#1^2 
 + 16*c*d^2*#1^4 - 8*b*d*e*#1^4 + 6*a*e^2*#1^4 + 4*b*d*#1^6 - 4*a*e*#1^6 + 
 a*#1^8 & , (-(a*e^4*Log[x]) + a*e^4*Log[-Sqrt[d] + Sqrt[d + e*x^2] - x*#1 
] - 4*c*d^2*e*Log[x]*#1^2 + 3*a*e^3*Log[x]*#1^2 + 4*c*d^2*e*Log[-Sqrt[d] + 
 Sqrt[d + e*x^2] - x*#1]*#1^2 - 3*a*e^3*Log[-Sqrt[d] + Sqrt[d + e*x^2] - x 
*#1]*#1^2 + 4*c*d^2*Log[x]*#1^4 - 3*a*e^2*Log[x]*#1^4 - 4*c*d^2*Log[-Sqrt[ 
d] + Sqrt[d + e*x^2] - x*#1]*#1^4 + 3*a*e^2*Log[-Sqrt[d] + Sqrt[d + e*x^2] 
 - x*#1]*#1^4 + a*e*Log[x]*#1^6 - a*e*Log[-Sqrt[d] + Sqrt[d + e*x^2] - x*# 
1]*#1^6)/(b*d*e^2*#1 - a*e^3*#1 + 8*c*d^2*#1^3 - 4*b*d*e*#1^3 + 3*a*e^2*#1 
^3 + 3*b*d*#1^5 - 3*a*e*#1^5 + a*#1^7) & ])/(4*c*d^2 - 4*b*d*e + 4*a*e^2))
 
3.4.96.3 Rubi [A] (verified)

Time = 0.73 (sec) , antiderivative size = 317, normalized size of antiderivative = 0.95, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {1622, 208, 2256, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\left (d+e x^2\right )^{3/2} \left (a+b x^2+c x^4\right )} \, dx\)

\(\Big \downarrow \) 1622

\(\displaystyle \frac {\int \frac {c d x^2+a e}{\sqrt {e x^2+d} \left (c x^4+b x^2+a\right )}dx}{a e^2-b d e+c d^2}-\frac {d e \int \frac {1}{\left (e x^2+d\right )^{3/2}}dx}{a e^2-b d e+c d^2}\)

\(\Big \downarrow \) 208

\(\displaystyle \frac {\int \frac {c d x^2+a e}{\sqrt {e x^2+d} \left (c x^4+b x^2+a\right )}dx}{a e^2-b d e+c d^2}-\frac {e x}{\sqrt {d+e x^2} \left (a e^2-b d e+c d^2\right )}\)

\(\Big \downarrow \) 2256

\(\displaystyle \frac {\int \left (\frac {c d-\frac {c (2 a e-b d)}{\sqrt {b^2-4 a c}}}{\left (2 c x^2+b+\sqrt {b^2-4 a c}\right ) \sqrt {e x^2+d}}+\frac {c d+\frac {c (2 a e-b d)}{\sqrt {b^2-4 a c}}}{\left (2 c x^2+b-\sqrt {b^2-4 a c}\right ) \sqrt {e x^2+d}}\right )dx}{a e^2-b d e+c d^2}-\frac {e x}{\sqrt {d+e x^2} \left (a e^2-b d e+c d^2\right )}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {c \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {x \sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}+\frac {c \left (\frac {b d-2 a e}{\sqrt {b^2-4 a c}}+d\right ) \arctan \left (\frac {x \sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}{\sqrt {\sqrt {b^2-4 a c}+b} \sqrt {d+e x^2}}\right )}{\sqrt {\sqrt {b^2-4 a c}+b} \sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}}{a e^2-b d e+c d^2}-\frac {e x}{\sqrt {d+e x^2} \left (a e^2-b d e+c d^2\right )}\)

input
Int[x^2/((d + e*x^2)^(3/2)*(a + b*x^2 + c*x^4)),x]
 
output
-((e*x)/((c*d^2 - b*d*e + a*e^2)*Sqrt[d + e*x^2])) + ((c*(d - (b*d - 2*a*e 
)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]*x)/(S 
qrt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/(Sqrt[b - Sqrt[b^2 - 4*a*c]] 
*Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]) + (c*(d + (b*d - 2*a*e)/Sqrt[b^2 
 - 4*a*c])*ArcTan[(Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]*x)/(Sqrt[b + Sq 
rt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/(Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[2*c* 
d - (b + Sqrt[b^2 - 4*a*c])*e]))/(c*d^2 - b*d*e + a*e^2)
 

3.4.96.3.1 Defintions of rubi rules used

rule 208
Int[((a_) + (b_.)*(x_)^2)^(-3/2), x_Symbol] :> Simp[x/(a*Sqrt[a + b*x^2]), 
x] /; FreeQ[{a, b}, x]
 

rule 1622
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_))/((a_) + (b_.)*(x_)^2 + 
(c_.)*(x_)^4), x_Symbol] :> Simp[(-d)*e*(f^2/(c*d^2 - b*d*e + a*e^2))   Int 
[(f*x)^(m - 2)*(d + e*x^2)^q, x], x] + Simp[f^2/(c*d^2 - b*d*e + a*e^2)   I 
nt[(f*x)^(m - 2)*(d + e*x^2)^(q + 1)*(Simp[a*e + c*d*x^2, x]/(a + b*x^2 + c 
*x^4)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] &&  ! 
IntegerQ[q] && LtQ[q, -1] && GtQ[m, 1] && LeQ[m, 3]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2256
Int[(Px_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^ 
(p_.), x_Symbol] :> Int[ExpandIntegrand[Px*(d + e*x^2)^q*(a + b*x^2 + c*x^4 
)^p, x], x] /; FreeQ[{a, b, c, d, e, q}, x] && PolyQ[Px, x] && IntegerQ[p]
 
3.4.96.4 Maple [A] (verified)

Time = 0.40 (sec) , antiderivative size = 393, normalized size of antiderivative = 1.18

method result size
default \(\frac {a \sqrt {\left (-2 a e +b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}\, \sqrt {2}\, \sqrt {e \,x^{2}+d}\, \left (-b d e +2 c \,d^{2}+\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\, e \right ) \operatorname {arctanh}\left (\frac {a \sqrt {e \,x^{2}+d}\, \sqrt {2}}{x \sqrt {\left (2 a e -b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}}\right )-\sqrt {\left (2 a e -b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}\, \left (a \sqrt {2}\, \sqrt {e \,x^{2}+d}\, \left (b d e -2 c \,d^{2}+\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\, e \right ) \arctan \left (\frac {a \sqrt {e \,x^{2}+d}\, \sqrt {2}}{x \sqrt {\left (-2 a e +b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}}\right )+2 \sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\, \sqrt {\left (-2 a e +b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}\, e x \right )}{\sqrt {\left (-2 a e +b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}\, \sqrt {e \,x^{2}+d}\, \sqrt {\left (2 a e -b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}\, \sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\, \left (2 a \,e^{2}-2 b d e +2 c \,d^{2}\right )}\) \(393\)
pseudoelliptic \(\frac {a \sqrt {\left (-2 a e +b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}\, \sqrt {2}\, \sqrt {e \,x^{2}+d}\, \left (-b d e +2 c \,d^{2}+\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\, e \right ) \operatorname {arctanh}\left (\frac {a \sqrt {e \,x^{2}+d}\, \sqrt {2}}{x \sqrt {\left (2 a e -b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}}\right )-\sqrt {\left (2 a e -b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}\, \left (a \sqrt {2}\, \sqrt {e \,x^{2}+d}\, \left (b d e -2 c \,d^{2}+\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\, e \right ) \arctan \left (\frac {a \sqrt {e \,x^{2}+d}\, \sqrt {2}}{x \sqrt {\left (-2 a e +b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}}\right )+2 \sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\, \sqrt {\left (-2 a e +b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}\, e x \right )}{\sqrt {\left (-2 a e +b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}\, \sqrt {e \,x^{2}+d}\, \sqrt {\left (2 a e -b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}\, \sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\, \left (2 a \,e^{2}-2 b d e +2 c \,d^{2}\right )}\) \(393\)

input
int(x^2/(e*x^2+d)^(3/2)/(c*x^4+b*x^2+a),x,method=_RETURNVERBOSE)
 
output
1/((-2*a*e+b*d+(-4*d^2*(a*c-1/4*b^2))^(1/2))*a)^(1/2)*(a*((-2*a*e+b*d+(-4* 
d^2*(a*c-1/4*b^2))^(1/2))*a)^(1/2)*2^(1/2)*(e*x^2+d)^(1/2)*(-b*d*e+2*c*d^2 
+(-4*d^2*(a*c-1/4*b^2))^(1/2)*e)*arctanh(a/x*(e*x^2+d)^(1/2)*2^(1/2)/((2*a 
*e-b*d+(-4*d^2*(a*c-1/4*b^2))^(1/2))*a)^(1/2))-((2*a*e-b*d+(-4*d^2*(a*c-1/ 
4*b^2))^(1/2))*a)^(1/2)*(a*2^(1/2)*(e*x^2+d)^(1/2)*(b*d*e-2*c*d^2+(-4*d^2* 
(a*c-1/4*b^2))^(1/2)*e)*arctan(a/x*(e*x^2+d)^(1/2)*2^(1/2)/((-2*a*e+b*d+(- 
4*d^2*(a*c-1/4*b^2))^(1/2))*a)^(1/2))+2*(-4*d^2*(a*c-1/4*b^2))^(1/2)*((-2* 
a*e+b*d+(-4*d^2*(a*c-1/4*b^2))^(1/2))*a)^(1/2)*e*x))/(e*x^2+d)^(1/2)/((2*a 
*e-b*d+(-4*d^2*(a*c-1/4*b^2))^(1/2))*a)^(1/2)/(-4*d^2*(a*c-1/4*b^2))^(1/2) 
/(2*a*e^2-2*b*d*e+2*c*d^2)
 
3.4.96.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 14146 vs. \(2 (291) = 582\).

Time = 111.97 (sec) , antiderivative size = 14146, normalized size of antiderivative = 42.48 \[ \int \frac {x^2}{\left (d+e x^2\right )^{3/2} \left (a+b x^2+c x^4\right )} \, dx=\text {Too large to display} \]

input
integrate(x^2/(e*x^2+d)^(3/2)/(c*x^4+b*x^2+a),x, algorithm="fricas")
 
output
Too large to include
 
3.4.96.6 Sympy [F]

\[ \int \frac {x^2}{\left (d+e x^2\right )^{3/2} \left (a+b x^2+c x^4\right )} \, dx=\int \frac {x^{2}}{\left (d + e x^{2}\right )^{\frac {3}{2}} \left (a + b x^{2} + c x^{4}\right )}\, dx \]

input
integrate(x**2/(e*x**2+d)**(3/2)/(c*x**4+b*x**2+a),x)
 
output
Integral(x**2/((d + e*x**2)**(3/2)*(a + b*x**2 + c*x**4)), x)
 
3.4.96.7 Maxima [F]

\[ \int \frac {x^2}{\left (d+e x^2\right )^{3/2} \left (a+b x^2+c x^4\right )} \, dx=\int { \frac {x^{2}}{{\left (c x^{4} + b x^{2} + a\right )} {\left (e x^{2} + d\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(x^2/(e*x^2+d)^(3/2)/(c*x^4+b*x^2+a),x, algorithm="maxima")
 
output
integrate(x^2/((c*x^4 + b*x^2 + a)*(e*x^2 + d)^(3/2)), x)
 
3.4.96.8 Giac [F(-1)]

Timed out. \[ \int \frac {x^2}{\left (d+e x^2\right )^{3/2} \left (a+b x^2+c x^4\right )} \, dx=\text {Timed out} \]

input
integrate(x^2/(e*x^2+d)^(3/2)/(c*x^4+b*x^2+a),x, algorithm="giac")
 
output
Timed out
 
3.4.96.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\left (d+e x^2\right )^{3/2} \left (a+b x^2+c x^4\right )} \, dx=\int \frac {x^2}{{\left (e\,x^2+d\right )}^{3/2}\,\left (c\,x^4+b\,x^2+a\right )} \,d x \]

input
int(x^2/((d + e*x^2)^(3/2)*(a + b*x^2 + c*x^4)),x)
 
output
int(x^2/((d + e*x^2)^(3/2)*(a + b*x^2 + c*x^4)), x)